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A unified method for deriving exact kinetic equations for dynamical 
quantities of a many-body system is presented. The well-known results of 
Mori and Zwanzig are recovered as special cases. Furthermore, it is shown 
that they differ only by the way in which the system is prepared at the 
initial time. Connections between this method and others recently developed 
are also discussed. 
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1,, I N T R O D U C T I O N  

In  recent years several  a t tempts  have been made  to ob ta in  the macroscop ic  
t r anspor t  equat ions  tha t  govern  the t ime evolu t ion  of  a m a n y - b o d y  system 
s tar t ing f rom first principles.  (1~ A m o n g  these it is wor th  emphas iz ing  those o f  
Zwanzig  (2~ and Mori ,  (3~ which made  wide use o f  the pro jec t ion  ope ra to r  
technique in t roduced  by Zwanzig.  (4~ In  Ref.  2 a r igorous  der iva t ion  o f  a 
kinetic  equa t ion  was accompl ished  s tar t ing f rom Liouvi l le ' s  equat ion ,  f rom 
which nonl inear  t r anspor t  equa t ions  were ob ta ined5  5,6~ In  Ref. 3 the t ime 
evolut ion  o f  the phase  space funct ions  descr ibing the states o f  the system 
were s tudied  and it was found  tha t  the t ime evolut ion  equa t ion  has the fo rm 
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of a generalized Langevin equation from which linear transport equations 
may be derived. 

Recently, Nordholm and Zwanzig ~7~ obtained a unified derivation of 
both the kinetic equation and the Langevin-type equation found by Mori, 
using Liouville's equation and using nonlinear projection operators. From 
this method they extracted nonlinear Langevin-type equations for the coarse- 
grained (or mesoscopic) variables and showed how to obtain an exact 
kinetic equation for the coarse-grained distribution function. 

Independently, Mori et al. ~8) followed an alternative procedure to 
derive a similar kinetic equation starting from the time evolution equation of 
a cell defined in phase space by the numerical values of the relevant phase 
space functions. ~9~ They also managed to cast this kinetic equation in terms 
of a power series expansion in a "slowness" parameter and applied it to the 
study of nonlinear processes. Yet, the relationship between the two methods 
is not clear at all, nor is it explicit in their own structure. 

The purpose of this work is twofold. First, we present a unified method 
for deriving this type of result starting only from the scanty knowledge that 
one has about the initial distribution function and the dynamics in phase 
space. Second, we show that both the Zwanzig and Mori et al. results are 
special cases of this scheme, which depend only on how the system was 
prepared at the initial time t = 0. Lastly, we point out that all the results 
derived here are exact and will be used for extracting some interesting 
applications in future papers. 

Section 2 is devoted to a review of a set of general definitions and concepts 
which will be of continuous use. Here it is stressed that in Zwanzig's scheme 
the time dependence is in the phase space distribution function, whereas the 
observables characterized by the set of phase space functions {A(F)} do not 
depend explicitly on time. On the other hand, in Mori's scheme these func- 
tions are time dependent and are averaged over time-independent initial 
distribution functions. We also construct the generalized projector operator, 
which will yield a general exact kinetic equation for various quantities, 
namely the hypercell defined in phase space by the numerical values of the 
functions {A(F)}, a correlation function defined with appropriate vectors, 
and finally the coarse-grained or mesoscopic distribution function g(a, t). ~ 
The exact kinetic equations for these quantities are derived in Section 3. 
Finally, in Section 4 the generalized projector operator derived in Section 3 
is shown to be equivalent to various forms leading to the results obtained by 
the aforementioned authors. 

2. D E F I N I T I O N S  

Consider a many-particle system which at time zero is prepared in a 
constrained equilibrium state. By removing some of these constraints the 
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system is allowed to relax to a new equilibrium state. This process is described 
macroscopically through the transport equations, which are known from 
phenomenological theories. To derive these equations from the equations of 
motion obeyed by each particle in the system is a more difficult question. 
To undertake this task, let us assume that to each macroscopic observable 
aj(t) ( j  = 1 .... ) there corresponds a phase function Aj(F) such that 

~j(t) = f p(F, t)Aj(P) dP (1) 

where p(F, t) is the probability density defined in F space at time t and P is a 
short-hand notation for a point in this space, P = (q, p). Thus, if one knows 
what the time evolution equation for p is, he can in principle find the time 
rate equations for the macroscopic variables. One way of accomplishing this 
is by recasting Liouville's equation, which is satisfied by p, into an appropriate 
form. This is the approach followed by Zwanzig and Nordholm. <2'7> Alterna- 
tively, one can study the equation of motion satisfied by Aj(P). Indeed, since 
formally 

p([', t) = e-'Ltp(I ', 0) (2) 

where p(I', 0) is the initially constrained probability distribution and L is 
Liouville's operator, one can easily see that 

where 

~j(t) = f p(P, O)Aj(P, t) dF (3) 

f p(p, o) dr  = 1 

f p(P, 0)Aj(F) dip = C~oj 

(5) 

(6) 

a0j being the macroscopic variables at the initial time. Thus, more information 
will be required, usually such that p(F, 0) maximizes the Gibbs H function. TM7 

In order to establish a link between the macro and microscopic descrip- 
tions of the system, needed, for instance, to account for fluctuations around 

Aj(F, t) = e~LtAj(P, O) (4) 

Equation (3) shows that if we know the time behavior of A j, then we can 
obtain the time-dependent macroscopic variables. This method has been 
followed by Mori/a) 

Whichever scheme we follow, it is important to have a knowledge of 
the distribution function p(P, 0). However, our experimental information 
about the system is clearly very restricted to comply with this fact. At most, 
what we know are the first two moments of the distribution, namely, that 
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the macroscopic variables, we will introduce the so-called mesoscopic 
variables (or coarse-grained variables) {aj}. These are the numerical values 
of the phase functions Aj(F) and will be regarded in their own status as 
stochastic variables. This implies that the time evolution in the mesoscopic 
level may be described either by (a) stochastic differential equations with a 
structure similar to that of Langevin's equation used in Brownian motion; or 
(b) kinetic equations describing the time evolution of  a distribution function 
g(a, t) for the a variables. This function is so defined that g(a, t) da is equal 
to the probability that at time t, A~(F) has a value aj within a range day for 
allj.  

Following the latter description introduced by Zwanzig, ~2~ we immediately 
notice that g(a, t) can be found from a knowledge of p(F, t). In fact, 

g(a,t)da= f. p(P,t)dP = [f p(P,t)G(a,O)dP]da (7) 
< A(U)  < a  + d a  

where 

G(a, 0) = 8[A(P) - a] = I - I  8[Aj(r) - aj] (8) 
J 

If one wants to think of the Ar as the Fourier components of observables 
for ordinary systems, e.g., fluids, magnets, etc., such as the particle momen- 
tum or energy density, then j can take positive and negative values and 
A_j(I', 0) = Aj*(I?, 0). Equation (8) determines a hypercell at time t = 0 in 
I' space, whose physical significance has been discussed earlier5 9~ 

An alternative equation for g(a, t) can be found in terms of A(F, t). 
Indeed, from Eqs. (2) and (7) we see that 

g(a, t) = f p(P, 0)G(a, t) dP  (9) 

where G(a, t) = dUG(a, 0). 
Thus, both the transport equations for the macroscopic variables and 

the kinetic equation for g(a, t) may be investigated following either Zwanzig's 
or Mori's approach starting in either case with knowledge of the phase 
space distribution function p(P, 0). 

To finish the general review of definitions, it is relevant to point out 
that G(a, t) is also related to Aj(F), since, trivially, 

Aj(P, t) = f ajG(a, t) da (10) 

and, furthermore, from Eqs. (3), (9), and (10) we find that 

aj(t) = f g ( a ,  t)aj da (11) 
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The macroscopic variables are the first moments of the distribution function 
g(a, t). 

Thus, two different situations arise. In one, which we shall call the 
Zwanzig scheme (ZS), all the time dependence of the varying quantities is 
contained in p(F, t). To the observables as(t) and g(a, t) in the macro and 
mesoscopic levels one associates phase functions A~(1 ~) and G(a, 0), respec- 
tively, which are time independent. In the other one, referred to as the Mori 
scheme (MS), one studies the explicit time dependence of the phase functions 
Aj(P) if one is interested in transport properties, or of the phase functions 
G(a, t) if one is interested in kinetic equations. In both cases the phase space 
distribution function p(I', 0) does not depend on time. 

Following the ideas set forth by Zwanzig and Nordhohn, (7~ we shall 
derive exact kinetic equations for the quantities g(a, t) and G(a, t) described 
above. For this purpose we begin by constructing a Hitbert space of functions 
of I ~ following the steps which are clearly indicated in Ref. 7. 

Thus, 

(A, a) = j dl-' w(r) A(r)B*(P) (12) 

where the asterisk stands for complex conjugation and w(r) is the metric 
of the space. This space will be denoted Hg(w I P). Also, we shall require that 
this metric is time independent, so that 

iZw(r)  = 0 (13) 

Using these definitions, we see that in the ZS we can write for the mesoscopic 
observables g(a, t) that 

g(a, t) = (G(a, 0), v(P, t)) (14) 

where we have written p(P, t ) =  v(P, t)w(P), which for a given metric 
defines the phase space function v(l", t). Notice that 

r t) = - iL,,(r, t) (15) 

as follows from Eq. (13) and Liouville's equation. 
As it is well known, (7~ the stationary condition imposed on w(r) implies 

that L is Hermitian in Ho(wlP ), or that 

(A, LB)  = (LA, B) (16) 

This property wilt allow us to switch from Zwanzig's scheme to Mori's 
scheme because from the formal solution to Eq. (15) we can easily see that 
Eq. (14) may be rewritten as 

g(a, t) = (6(a, t), v(r, 0)) (17) 

which is precisely Eq. (9), the equation for g(a, t) in Mori's scheme. 
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Notice should be made of the fact that one of the advantages of express- 
ing an observable like g(a, t) as an inner product is that it is unnecessary to 
have knowledge of the complete v(P, t) function in ZS or of G(a, t) in MS 
to calculate the observable g(a, t). For this purpose let Ha(wlF) be the 
subspace spanned by the set of vectors G(a, 0) for all possible values of the 
vector a. Let Po be a projection operator defined in such a way that if applied 
to a vector in Ho, it generates a vector in the subspace Ha. Schematically, 

PaHo(w I r )  = Ha(wl F) 

We propose for Po the explicit form 

Po --- (db ( .... G(h, 0)) G(b, 0) (18) 
[G(b, 0)] J 

where 

F 
[G(b, 0)] = J dP w(P)G(b, 0) (19) 

Following from the definition of inner product, one has that 

(G(a, 0), G(b, 0)) = [G(b, 0)] 3(a - b) (20) 

It follows at once from the definition of P~ that it is indeed a projection 
operator, namely that 

eo2Ho(wl F) = ?aHo(w[ P) (21) 

and that it is Hermitian, 

(A, e . B )  = (?~A, B) (22) 

Furthermore, it is trivial to see that 

P~G(a, 0) -- G(a, 0) (23) 

With the aid of Eqs. (22) and (23), Eq. (14) may be written as 

g(a, t) = (G(a, 0), Per(F, t)) (24) 

and this proves that to calculate g(a, t) one only needs to know the part of 
v(P, t) that is in Ho(w[F). 

Using the definition of Po, we can also write that 

f db g(b, O)G(b, 0) V(I a, 0) [G(b, 0)] + (1 - Pe)v(F, 0) (25) 

which clearly displays how from the information contained in the mesoscopic 
observable g(b, O) at t = 0 we can only learn about the part of v(F, O) that is 
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in Ha(w] r). The projected part (1 - Pa)v(r, O) will be arbitrarily dropped 
out by assuming that 

v(r,  o) = for (F,  0) (26) 

This assumption is of a fundamental nature. It is analogous to the random 
phase approximation introduced to obtain the quantum master equation (11) 
and is used by Mori and Zwanzig in a manner which will be discussed later. 

To finish with the properties of our projector Pa, it is important to 
emphasize that although it is linear in the vectors G(a, t) as shown by Eq. 
(23), it is a nonlinear one for arbitrary phase functions. Indeed, if f (r) is an 
arbitrary phase function, 

f GO), 0) = f(A(Y)) (27) 
(f(r), G(b, 0)) 

Pj(r) = db [G(b, 0)1 

which is the value of f depending only on the phase space variables through 
A(F). In order to show this, it is sufficient to examine the structure of the 
integral 

? j ( r )  = f a r '  w(r') 8[A(r') - A(r) l f ( r ' )  (28) 

f d r '  w(r') ~[A(r') - A(r)] 

and so to notice that the above statement follows directly. In the form given 
by Eq. (28), it is a generalization of Zwanzig's projector, which is defined 
with w(F) = 1. As a side note, if w(r) = pea(r), then P~ reduces to the 
projector used by Mori et al. (8~ to derive kinetic equations and by others to 
study the nonlinear dynamics of stochastic variables. (9'1~ This latter choice 
implies that 

p(r, o) = pe j r )v( r ,  o) (29) 

so that at time t = 0 the system is in a state which is close to the final equi- 
librium state. 

The foregoing discussion clarifies the fact that although P(w(r) = l) 
and Pz(w(r) = Pea) are similar in structure, they correspond to different 
physical preparations of the system at t = 0. 

The property of PG shown by Eq. (27) implies that our basic assumption 
contained in Eq. (26) consists in asserting that the distribution function 
p(r, 0) at the initial time is only a function of the phase functions {Ay(F)}, 
if we include the integrals of motion in the set {A~(F)}. 

3. KINETIC E Q U A T I O N S  

This section will be devoted to the derivation of exact kinetic equations 
first using Mori's scheme and then using Zwanzig's scheme. 
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To accomplish our goal, we start from Eq. (17), which, after its time 
derivative is taken, reads 

dg (a, t) = [dG (a, t), v(r, 0)] (30) dt ~ dt ! 
We now sketch Mori's ideas to provide for an equation for G(a, t) which is 
of the generalized Langevin type. ~'9~ Let ~(a, t [b) be the time correlation 
function of the vectors G(a, t) and G(b, 0), namely 5 

~(a, rib) = [G(b, 0)]-l(G(a, t), O(b, 0)) (31) 

Then it is shown in Appendix A that 

d~(a, t lb)/dt 

= f dcif~(a,c)~(c, tlb)- f~ ds f dcK(a,e,s)~(e,t- slb) (32) 

where 

and 

if2(a, b) = (iLG(a, 0), G(b, 0))/[G(b, 0)] 

K(a, b, t) = (F(a, t), F(b, 0))/[G(b, 0)] 

(33) 

(34) 

F(a, t) = {exp[(1 - Po)iLt])(1 - Po)iLG(a, 0) (35) 

Equation (32) is a linear closed equation for the quantity ~(a, t ]b) with 
a memory function that involves the correlation function of the projected 
dynamics of the phase space function d(a, 0). If we define an operator 
Z(a, t), the Zwanzig operator (ZO), as 

Z(a, t)f(a, b, t) = .I de if~(a, eft(e, b, t) 

then Eq. (33) may be rewritten in a shorter way, namely, 

d~(a,  t[b)/dt = Z(a, t)~'(a, t[b) (37) 

The next step in Mori's procedure is to separate the vector G(a, t) into 

C~(a, tlb) reduces to the conditional probability ~r(a, t[b) that A(F) has the value a at 
time t if it had the value b at time zero when (26) is assumed to hold true. In fact, using 
Eq. (17), one sees that 

g(a, t) = _[ db g(b, 0)Tr(a, t Ib) 

where ~r(a, rib) is given by Eq. (31). 
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its component in Ha(wIF ) and its component along the complementary 
subspace Ha(w] F). Then 

G(a, t) = PeG(a, t) + (1 - Pc)a(a,  t) (38) 

From Eq. (A.9) and the definition of Pc we can rewrite this equation as 

f f0'J G ( a , t ) =  dbCg(a, tlb)G(b,O) + ds d b ~ ( a , t -  s]b)F(b,s) (39) 

which allows us to express the function G(a, t) defining the hypercell in 
phase space in terms of the correlation function T(a, t ]b). 

Next, using dG(a, t)/dt obtained from Eqs. (37) and (39), one finds, after 
some rearrangement, that 

dG(a, t)/dt = Z(a, t)G(a, t) + F(a, t) (40) 

This expression is of Langevin type, where the "fluctuating term," 
which is really the term containing all the irrelevant parts of G(a, t), satisfies 
a fluctuation-dissipation theorem as expressed by Eq. (34). 

Direct substitution of Eq. (40) back into Eq. (30) yields the desired 
kinetic equation for g(a, t). Indeed, using Eq. (17), we find that 

dg(a, t)/dt = Z(a, t)g(a, t) + (F(a, t), v(P, 0)) (41) 

Notice that so far no assumption has been made about the explicit form 
of the initial distribution, so that Eq. (41) is the most general form of a 
closed kinetic equation for the function g(a, t). 

The final step in Mori's treatment involves the introduction of the 
information concerning the initial state of the system. Noticing that the last 
term in Eq. (41) is the average of F(a, t) with the initial distribution p(P, 0), 
namely 

(F(a, t), v(r, 0)) = (F(a, t)) ~ (42) 

and using an analogy with Brownian motion, where this average is set equal 
to zero, one now assumes that 

(F(a, t))  ~ = 0 (43) 

In our formulation this condition is entirely equivalent to our basic 
assumption expressed by Eq. (26) because 

(F(a, t), v(P, 0)) = (F(a, t), Per(P, 0)) = (PaF(a, t), flU, 0)) = 0 

since F(a, t) is in/Tg(wlP ) due to Eq. (35) and thus PGF(a, t) = 0. Thus, in 
Mori's formalism, 

dg(a, t)/dt = Z(a,  t)g(a, t) (44) 

is the exact kinetic equation satisfied by g(a, t). 
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Let us now turn our attention to the derivation of a kinetic equation for 
g(a, t) following Zwanzig's scheme. Here we study the time behavior of the 
function v(F, t), as was pointed out before, ~vhence 

a (r, dg(a, t) = G(a, 0), (45) 
dt dt ! 

The whole idea now is to recast Eq. (15), which is the time evolution equation 
for v(r, t), into the appropriate form. To do this, we write v(I', t) as 

~(r, t) = P : ( L  t) + (1 - Pe)v(P, t) (46) 

in a way similar to that following Eq. (A.9) to calculate (1 - P a ) v ( F ,  t). 
Letting the operator - iL act on the resulting expression, one finds that 

dr(F, t) = _ f db g(b, t) iLG(b, O) 
dt ~ [G(b, 0)] 

f~ iLr(b, - s )  + ~(F, t) (47) f dh g ( b , t - -  s) 
+ ds )__  [G(b, 0)1 

where 

4,(P, t) = - iL{exp[-(1 - Pa)iLt]}(1 - Pa)v(I', 0) (48) 

When Eq. (47) is substituted back into Eq. (46), we find the time evolution 
of  g(a, t), namely, 

= f :~ f dhg(b '  t - s )  dg(a,dt t) _ __,'/h [G(b,g(b' 0)]t) (G(a, 0), iLG(b, 0)) + ds __ [G(b, 0)] 

x (G(a, 0), iLF(b, -s))  + (G(a, 0), ~(P, t)) (49) 

Using the Hermiticity property of L and that of (1 - Pa)L in/ta(w] P), 
one obtains the exact kinetic equation for the distribution function g(a, t), 
which is identical to Eq. (41). 

In order to follow the way in which the initial conditions are introduced 
in Zwanzig's scheme, one must remember that in his earlier derivation (2> the 
kinetic equation is written as 

dg(a, t) ( G(a' O)'dP~ (50) 

and the time evolution for the projected part is 

f2 dPa v(P, t) = _ PaiLPav(P, t) + ds PeiL{exp[-i(1 - Pe)Ls]} dt 
x (1 - P~)iLPa,,(r, t - s) + Pad(r, t) (51) 
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Next it is assumed that this equation is closed in PGv(F, t) by setting 
PG6(F, t) = 0. This implies that Eq. (26) is valid and that the last term in 
Eq. (49) vanishes. Hence Eq. (44) follows at once. 

It is thus clear that using either formalism one finds the exact kinetic 
equation (41) and that the assumption given by Eq. (26) is introduced in both 
of them using arguments which are apparently independent but lead to the 
same dosed kinetic equation for g(a, t), namely Eq. (44). 

As mentioned in footnote 5, preceding Eq. (31), when (26) is introduced 
Cs tlb) = ~r(a, tlb ). Thus it follows from Eq. (37) that 

dTr(a, t lb)/dt = Z(a, t)Tr(a, t lb ) (52) 

Zwanzig's kinetic equation (2) is obtained when w(F) = 1 and g(a, 0) = 
3(a - ao), so that 

p(r, 0) = ~ ( A ( r )  - ao)/S(ao) (53) 
where S(ao) = f dr ~ ( A ( r )  - a0) is the structure function. 

On the other hand, Mori's equation(8) is found when w(F) = Z -  le-Bg, 
so that 

o(r ,  o) = e-~:~g(A(r))/goq(A(r)) (54) 

where g~q(A(P)) is the distribution function for the mesoscopic variables 
when the system is in thermal equilibrium. 

These expressions clearly exhibit that the results obtained by Mori and 
Zwanzig, although identical in structure, correspond to different choices of 
p(r) at the initial time, i.e., to different ways of physical preparation of the 
system. 

Following the ideas presented here, it is possible to relate Mori's 
approach to the one followed by Nordholm and Zwanzig (~ to find nonlinear 
transport equations. It should be kept in mind that although it is linear in 
the G(a, t) functions, our treatment is highly nonlinear for the phase functions 
{Aj(P)}. In fact, it can be shown (8~ that from Eq. (40) it is possible to derive a 
time evolution equation for Aj(F, t), where no term depending on the phase 
functions is neglected. To prove this statement, we shall proceed in a simpler 
fashion using Zwanzig's scheme. 

Taking the time derivative of Eq. (1) we find that the transport equations 
are given by 

d~j( t ) = - (Aj(r,  0), d~(r, t)]  (55)  
dt dt l 

Using Eq. (47), we find after some manipulation that 

d~j(t)dt = f db<iLAy(F,O);b>g(b,t) + .(~ ds f db<iLR,(r,s);b> 

• g(b, t - s) + (R3.(F, t)) ~ (56) 
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where (...; b) is the average taken over a microcanonical distribution within 
the hypercell A ( F ) =  b, 6 ( . - - ) ~  represents the average over the initial 
distribution, and 

Rj(F, t) = {exp[(l - P~)iLt]}(1 - Pa)iLAj(F, 0) (57) 

If  one now assumes that Eq. (26) is true, then, since Rj(P, t) does not 
belong to the space Ha(wlF), its average over the initial distribution drops 
out and the resulting equations, namely, 

d,~,(t)/dt = f db (iLAj(F, O); b)g(b, t) + f [  ds f db 

• (iLRj(F, s); b)g0a, t - s) (58) 

are the nonlinear transport equations derived by Nordholm and Zwanzig. 
One can also use this result to find the generalized nonlinear Langevin 

equations, which are obeyed by the phase functions {Aj(P)}. If  one further- 
more realizes that we may set v(F, 0) = ~(F - I?o) because of the fact that 
the time evolution implied by (56) corresponds to a single experimental setup, 
we find that (7) 

f ;o'f dAj(F, t)/dt = db (iLA,(P, 0); b)G(b, t) + ds db 

x (iLRj(F, s); b)G(b, t - s) + Rj(F, t) (59) 

This equation is precisely the generalized nonlinear Langevin equation 
recently derived by Mori et aL (s) 

Summing up, exact linear kinetic equations can be derived for distribu- 
tion functions g(a, t) at the mesoscopic level, each one being characterized 
by the metric w(F). Two particular choices of this metric lead directly to the 
equations first derived by Mori and Zwanzig. Furthermore, it has been 
shown how the nonlinear transport equations (58) and the nonlinear general- 
ized Langevin equations for the space functions A~(F), Eqs. (59), follow 
directly from the previous results. In the following section we shall discuss 
various representations of the Zwanzig scheme that have been used in a wide 
variety of contexts in the recent literature. 

4. A L T E R N A T I V E  EXPRESSIONS FOR THE Z W A N Z I G  O P E R A T O R  

The importance of the Zwanzig operator has been made apparent in the 
previous section. Here we show that its explicit expression given by Eq. (36) 
is equal to the complex conjugate of the original operator found by Zwanzig 
and furthermore that this form leads in a more or less direct fashion to a 

6 <f(F); b> = ~ dF f(F)pm~,,(b, O) = [G(b, O)l-~(f(F), G(b, 0)). 
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series of operators, the generalized Fokker-Planck operator, the modified 
Fokker-Planck operator, and the Mori-Fujisaka-Shigematsu (MFS) form, 
all of which have played important roles in various treatments of this subject. 

Let us begin by proving our first statement. Taking the complex con- 
jugate of Eq. (36) and using Eqs. (A.11) and (A.12), one finds that 

Z*(a, t)f(a, t) = [G(a, 0)]{ - f db i~(b, a) f(b,  t) 
[G(b, 0)1 

fo f _,f(b, t - s)] - t d s  dbK(b,a,-s) -~-O~ f (60) 

where we have considered that f (a ,  t) is a real function. Defining an average 
over the hypercell assuming a microcanonical distribution function [see foot- 
note 6, following Eq. (56)] and using Eqs. (33) and (34), we find that 

if~(a, b) = <iLG(a, 0); b> (61) 

and 

K(a, b, t) = -<iLF(a, t); b> (62) 

where <... ;b> is the average defined over a microcanonical distribution. 
Equation (60) takes the form 

Z*(a, Of(a, t) = [G(a, 0)]{ - f db <iLG(b, 0); a> 
f(b, t) 

[G(b, 0)] 

f~ f _ . f (b , t -  s)'l + ds db <iLF(b, --s);  a? [0-(b,O)] f (63) 

Since ~r(a, t lb) is real, Eq. (52) also may be expressed as 

dzr(a, t]b)/dt = Z*(a, t)~r(a, t lb) (64) 

which, with the use of Eq. (63), may be rewritten as 

d~r(a, t [ b ) d t  [G(a, 0)]( - f dc <iLG(c, O); a) rr(c't]b-~--)[G(c, 0)] 

+ (.to ds f de <iL{exp[-(1 - Pa)its]}(1 - Pa)itG(e, 0); a> 

~ ( c ,  t - s ]b) '~  (65) 

When w(U) = 1, Eq. (65) reduces to Eq. (24) of Zwanzig's paper. <2) Thus, 
we shall call Eq. (36) for ZO its fundamental form. Notice that it is the 
complex conjugate of Zwanzig's expression, but it is more general in the 
sense that it has been defined for an arbitrary metric w(I') satisfying Eq. (13). 
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We now proceed to calculate the generalized Fokker-Planck form for 
ZO. To do so, use is made of the following identities: 

iLG(a, 0) = - ~ Ak(0) eG(a, O)/Oa~ (66) 
k 

and 

PG{f(F)G(a, 0)} = {PGf(F)}G(a, 0) (67) 

Using Eq. (66), we can rewrite the form for if2(a, b) given by Eq. (33) as 

g0 
i a ( a ,  b) = - ~ [v~(a) ~(a - b)l  (68) 

where vk(a) is the average of .4k(0) over the hypercell characterized by 
A ( r )  = a, or  

v~(a) = (&(r, 0); a) (69) 

We now proceed in a manner similar to that used by Mori (8) to cast 
the kernel K(a, b; s) in a more convenient way. Thus, using Eqs. (35) and 
(66) one arrives at 

F ( a ,  t )  = - ~ ~ Xk(a, t) (70) 
-7 vuk 

where 

Xk(a, t) = U(t){Rk(O)G(a, 0)} (71) 

Rk(t) is defined in Eq. (57) and U(t) is the time evolution operator in the 
subspace/~o(w] F), namely, 

U(t) = exp[(1 - Po)iLt] (72) 

Clearly, Rk(0) is the part ofAk(F, 0) that lies in/ta(w I P). Thus, separating 
~4k(F, 0) into its components, one has that 

= f db vk(b)G(b, 0) + Rk(0) Ak(P, 0) (73) 

Furthermore, by definition, the time evolution equations for F(a, t), 
Xk(a, t), and Rk(t) are of the form 

dB(t)/dt = (1 - Pc)iLB(t) (74) 

and they are related through the set of equalities 

= f daa~F(a,t)= f da Xk(a, t) (75) Rk(t ) 
J J 
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as may be easily verified. Introducing Eq. (70) into Eq. (34), we get 

K(a, b, t) = [G(b, 0)] -1 ~ ~ ~a~ 0b,* {[G(b, 0)]Kk~(a, b, t)} (76) 

where now 

Kk~(a, b, t) = (X~(a, t), X,(b, 0)) = (Rz*(0)Xk(a, t); b) (77) 
[G(b, 0)] 

Substitution of Eqs. (68) and (76) into Eq. (36) leads, after an integration 
by parts, to the final expression 

: - + 2 

f(b, t - s) 
x {[G(b, 0)]Kk,(a, b, s)} 0b,* [-G(b,())] (78) 

This result is the generalized Fokker-Planck form of ZO. It consists of 
two parts, one which is Markovian and yields a "convective" contribution 
tof(a ,  t), and a memory term which is in essence a measure of the correlation 
between vectors R~*(0) and X~(a, t) in the hypercell characterized by A(P) = b. 

The modified Fokker-Planck form for Z(a, t) may be easily found from 
Eq. (78). The underlying idea is to separate Eq. (77) in such a way that the 
correlation between Rp(0) and Rk(t) appears in an explicit manner. This is 
accomplished if we write 

Xk(a, t) = Rk(t)G(a, 0) + Yk(a, t) (79) 

which is essentially a definition for the quantity Yk(a, t). Substitution into 
Eq. (77) yields 

K~,(a, b, t) --- Lk~(b, t) 3(a - b) + K~t (a, b, t) (80) 
where 

and 
Lkz(b, t) = (Rk(t)R,*(O); b) (81) 

Ks b, t) = (Yk(a, t)Rz*(0); b) (82) 

Combination of Eqs. (80) and (78) leads to the modified Fokker-Planck 
form for ZO, namely 

Z(a, 0 f (a ,  t) 

f(a, t - s) 

+ ~'k ~ - ~  ds db [G(b, 0)]K;,(a, b, s) 0b~*0/(b,[G(b,t -0)]s) (83) 
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The main reason for rewriting Z(a, t) in this form is that it easily lends itself 
to the introduction of approximations. These will be discussed in another 
paper. 

Continuing within the context of this work with regard to exact kinetic 
equations, we shall finally derive the MFS form for ZO. It consists essentially 
in writing the correlation appearing in (82) as a power series expansion of 
all its diagonal terms in a space. Thus, one can approach the problem by 
thinking of the diagonalization of a matrix whose elements are K~,(a, b; t). 
To do this, one proceeds in a systematic way: first, Yk(a, t) is written in 
terms of Xk(a, s) with 0 ~< s ~< t. Second, one obtains an integral equation for 
Xk(a, t) and writes its solution in terms of a power series expansion. Third 
and last, one calculates Kk~(a, b; s). 

Taking the time derivative of Eq. (79) and using Eq. (74), one gets 

dYk(a, t)/dt = (1 - ea)iLXk(a, t) -- [(1 -- Pa)iLRk(t)]G(a, 0) (84) 

Defining iL~ and its complement iLd through the relations 

iLa = - ~ dk(O) alaak (85) 
k 

iL~' = iL - iL~ (86) 

and introducing them in (84), one finds, with the aid of Eqs. (67) and (79) 
that 

dYk(a, t)/dt = (1 - Pa)iL~' Yk(a, t) + (1 - PG)iL~Xk(a, t) (87) 

By definition, Yk(a, 0) = 0, so that the solution to Eq. (87) is 

Y~(a, t) = ,is {exp[(1 - Pa)iL,'(t - s)]}(1 - Pa)iLaXk(a, s) (88) 

To obtain an integral equation for X~(a, t), we substitute Eq. (88) back 
into Eq. (79) to get 

Xk(a, t) = Rk(t)G(a, O) 

fo' + ds {exp[(1 - Pa)iLd(t -- s)]}(1 -- Po)iL~Xk(a, s) (89) 

In Appendix B it is shown that the solution to this equation is 

X~(a, t) = ~ Q,(a, t) (90) 
1'1.=0 

where Q0(a, t) is just equal to the inhomogeneous term of Eq. (89) and 
Q,(a, t) is given by Eq. (B.9). This is a rather complicated expression due to 
the presence of the operators (1 - P~)iL~ and (1 - PG)iL'. It is thus con- 
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venient to transform it into another form in which the more familiar operator 
(1 - Pa)iL shows up. This is done in Appendix B, where, after some algebraic 
manipulations, one finds finally 

Xk(a,t) = ( - 1 ) " ~  . . .  ~ ea;~...b%a(a,o) S(k,k,..., k,; t) (91) 
~,=0 /r kn 

where S(k,  kl ..... k ,;  t) is given by Eq. (B.23). 
When substituted into Eq. (77) this finally yields 

Kk~(a, b; t) 

~o ~ ~ <8~*(O)S(k, kl ..... k.; t); b> ~(a - b) = = ( - 1 ) ~  "'" ~O--~kl"''~ak~ 

(92) 

which shows that this quantity has been diagonalized in a space. Introducing 
Eq. (92) into the generalized Fokker-Planck form for ZO, Eq. (98), and 
performing the b integration, one gets 

Z(a, t)f(a, t) 

= -  2 •  + 2 Oak n=o ko kt kn 

~ 2 x Oak~ Oa~ "'Oak. dt'  

0 f ( a , t -  t') (93) x [G(a, 0)](S(k0, kl ..... k.; t')R,*(0); a) ~a~* [G(a, 0)] 

which is the MFS form for ZO. It is important to emphasize the fact that 
the first term of the series (n = 0) is the second term appearing in the modified 
Fokker-Planck form of the operator, so that the whole series, except for 
that term, is nothing else than the last term of Eq. (83). 

Summing up, we have shown how, starting from the fundamental form 
for Z(a, t) given by Eq. (36) it is possible to derive its equivalent expressions, 
namely, from Eq. (65) found by Zwanzig, one obtains the generalized 
Fokker-Planck form given in Eq. (78), the modified Fokker-Planck form 
given in Eq. (83), and the MFS form given in Eq. (94). All of these expressions 
are exact and lend themselves to finding equivalent time evolution equations 
for the hypercell given in Eq. (40), for the correlation function W(a, t lb) 
given in (37), and for the kinetic equation (44). As a final remark, we should 
mention that, although Eq. (93) was found by essentially the same technique 
used by Mori et al., (8) our results are more general, being valid for any 
arbitrary choice of the metric w(F). 
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In forthcoming publications we shall show how one can obtain approxi- 
mate Markovian and non-Markovian kinetic equations for the relevant 
variables and the transport equations as well. 

A P P E N D I X  A 

In this appendix we outline the steps leading to Eqs. (32) and (40), 
namely the time evolution equation for the hypercell in phase space. Starting 
with the definition of Cg(a, t[b), one has 

dC~(a, t lb ) = (dG(a, t)/dt, G(b, 0)) = (iLG(a, t), G(b, 0)) (A.1) 
dt [G(b, 0)] [G(b, 0)] 

where use has been made of the equation of motion for G(a, t). Moreover, 
since the Liouville operator is Hermitian, we also have 

deE(a, t lb) _- _ (G(a, t), iLG(b, 0)) = _ (G(a, t), 0(b, 0)) (A.2) 
dt [G(b, 0)] [G(b, 0)] 

The vector G(b, 0) can be separated into its component on the space 
Ha(w[ F) and its component in the complementary space, namely 

(~(b, 0) = PeiLG(b, 0) + (1 - Pa)iLG(b, O) (A.3) 

Applying the explicit form for the operator Pa given by Eq. (18), one is 
led to 

~(b, 0) = f de i~(b, c)G(c, 0) + (1 - Pe)iLG(b, 0) (A.4) 

where i~(b, c) is given by (33). 
Substitution of Eq. (A.4) into Eq. (A.2) yields 

f i~*(b, c) d~(a,  t lb) = de  [G(c ,  0 ) ] ~ ( a ,  t i c )  
dt ) [G(b, 0)] 

_ (G(a, t), (1 - Pc)G(b, 0)) (A.5) 
It(b, 0)] 

The second term on the rhs of this expression in turn can be related to 
the correlation function ~(a, t lb). Indeed, using the fact that (1 - Pa) is 
idempotent and Hermitian, one gets 

(G(a, t), (1 - Pa)iLG(b, 0)) = ((1 - Pa)G(a, t), (1 - Pa)iLG(b, 0)) (A.6) 
[G(b, 0)] [G(b, 0)] 

Since the time evolution equation for (1 - Pe)G(a, t) is 

d(1 - Pa)G(a, t) = (1 - Pa)iLPa(a, t) + (I - Po)iL(1 - Pa)G(a, t) (A.7) 
dt 
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whose solution is 

fo (1 - Pa)G(a, t) = ds {exp[(1 - Pa)iLs]}(1 - Pa)iLPoC(a, t - s)  (A.8) 

this may be cast, after application of the projector operator to G(a, t - s), in 
the form 

fro (1 - P~)G(a, t) = de ds ~(a, t - s [e)F(c, s) (A.9) 

where F(e, t) is defined by Eq. (35). 
Substituting Eq. (A.9) back into Eq. (A.6) and using the resulting 

expression in Eq. (A.5), we obtain 

d~(a, t]b) f de in*(b, e)[G(c, 0)] ~ ( a ,  tie) 
dt = [G(b, 0)] 

ff; - de ds ~ ( a ,  t - sle)K(e, b, s )  (A .10)  

where K(c, b, s) is defined by Eq. (34). 
On the other hand, from Eqs. (33) and (34) one gets the following 

relations: 

i[2(b, c)[G(e, 0)] = if2*(e, b)[G(b, 0)] (A.11) 

K(e, b, s)[G(b, 0)] = K(b, e, -s)[G(c,  0)] (A.12) 

To obtain the former, use has been made of the Hermitian property of L, 
and for the second, the fact that (1 - PG)L is Hermitian on the subspace 
/Tc(w]F). Furthermore, from Eq. (31) it is easy to see that if(a, t[b) satisfies 

~(a, t lb)[G(b, 0)] = c~*(b, - t la)[G(a, 0)] (A. i3) 

Now, from direct substitution of Eq. (A.11) into Eq. (A. 10) we obtain 

=f -fo'.f , dT(a, t [b) de ~(a, t [e)if2(e, b) de ~(a, - s [e)K(e, b, s) 
dt 

(A.14) 

To find Eq. (32) we take the complex conjugate of this expression, interchange 
indices a and b, and, use Eqs. (A.11) and (A.12), obtain 

dC~(a, - t Ib)/dt = - f de i~(a,  c)~(e, t[b) 1 

+ ds de K(a, e, -s)Cg(e, - t + slb) (A.15) 

which, after the change of t to - t ,  leads finally to the desired result. 
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In order to find the equation of motion for the hypercell we again split 
G(a, t) into its projected and unprojected components, namely 

G(a, t) = PeG(a, t) + (1 - Pe)G(a, t) (A.16) 

Use of the definitions of Pc and Cg(a, tlb) leads to 

PeG(a, t) = f db cg(a, t [b)G(b, 0) (A.17) 

which, combined with Eqs. (A.8) and (A.16), yields 

G(a, t) = f dbg'(a,t[b)GCo, O) + f db f~ ds<g(a,t - s[b)F(b,s) (A.18) 

Taking the Laplace transform of Eq. (A. 18), we have 

G(a, ~) --- ~ db ~(a, E]b)[G(b, 0) +/~(b,  ~)] (A.19) 
J 

where 

f(~) = e-'tf(t) dt (A.20) 

On the other hand, the Laplace transform of Eq. (A.14) leads to 

f d e ~ ( a ,  , l e ) [ - i ~ ( e , h )  + /~ (e ,b ,  ,) + ~(b - c)] = ~(a - b) (A.21) E 

noticing that Cg(a, 0]b) = 3(a - b). 
The inverse of the correlation c~-l(a, E[b) is expressed as 

~ - l ( e ,  ~lb) = - iO(e, b) + /~(e, b, ~) + �9 3(b - e) (A.22) 

Multiplying Eq. (A.19) by Eq. (A.22), integrating over a, and using 
Eq. (A.21), we obtain 

-G(e ,  0) + ~ ( e ,  ~) = f da [i~)(e, a) - K(e, a, E)]d(a, ~) + F(e, E) (A.23) 

which, after its inverse Laplace transform is taken, yields the desired result, 
Eq. (40) for the hypercell, where the term Z(a, t)G(a, t) is given by Eq. (36) 
w h e n f  = G. 

A P P E N D I X  B 

In this appendix we outline the steps leading to Eqs. (90) and (9t). 
We begin by taking the Laplace transform of Eq. (89) to obtain 

1 . , (1 - P~)iL~Xk(a, E) (B.1) )~(a, r = kk(r 0) + e - (1 - Pe)tJ-~ 
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From this expression we obtain 

(1 _-. Pa)iL~ ,] - lkk(E)a(a ' 0) (B.2) 
)(~(a,a) = 1 - , _  (1 - P a ) i L , ]  

Using the binomial expansion of (1 - a) -1, one has 

~ ( a ,  ,) = ~ [0(a, ,)]~kk(e)G(a, 0) (B.3) 
r ~ = 0  

where we introduce the operator 

(1 - Pa)iLa (B.4) 
0 ( a ,  , )  = ,  _ (1 - P );Lo' 

Taking the inverse Laplace transform of Eq. (B.2) leads to 

X~(a, t) = ~ an(a, t) (B.5) 
n = 0  

where 

Q,(a, t) = ~ce- ~1 [Q(a, ,)]"Rk(,)G(a, 0)} (B.6) 

Furthermore, 

O(a, t) = s ~) = {exp[(l - Po)iL/t]}(1 - Pa)iL~ (B.7) 

so that 

Q,(a, t) = d t l . . ,  dt,  Q(a, t - t0  

x Q ( a ,  t l  - t2) . . ,  a(a,  t~ - t~_z)R~(t~)G(a,O) (B.8) 

which, after repetitive application of  Eq. (B.7), yields 

Q,(a, t) = d q . . .  {exp[(1 - t'a)iLj(t - tO]} 

• (1 - Po)iL~.. .(exp[(1 - Po)iLa'(t, - tn-1)]} 

• (t - Po)iL~Rk(t,)G(a, 0) (B.9) 

which is the general term in Eq. (90). 
We now express Eq. (B.9) in terms of the operator iL to obtain the 

desired equation. To do this, we first consider the effect of 0(a, E) on k~(E)G(a, 
0), namely 

O(a, E)k~(e)G(a, 0) = 1 (1 - PG)iL~kk(~)G(a, 0) (B.10) 
c - ( 1  - Pz)iLa' 
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and recalling that iL,~ is defined through Eq. (85), we find 

(1 - Pa)iLahk(e)G(a, 0) = - (1 - Pa) ~ kk(E)A~,(0) 8G(a,sak,0) (B.11) 

Furthermore it is easy to show that the following holds: 

{ ~ ,9 G(a, 0)} = ~ a G(a, 0){P~f(r)} (B.12) PG f (F)  8a~1 . . .  8ak---~ 8akl 8a~, 

for an arbitrary function f (P)  which does not depend on the set {ak). Using 
Eqs. (B.11) and (B.12) in Eq. (B.10), we obtain 

1 l k~OG(a,O)(l_po)k~(E)dk~(O)] Q(a, r O) = e -- (1 - P~)iLa' - Oak, 
(B.13) 

The explicit application of the operator [~ - (1 - Po)iL,~']-1 in this 
equation is done through its power series representation, whence 

O(a, ,)/{tc(~)G(a, 0 ) =  -- 1 ~ ((1 -- Pr 8G(a, 0) 
E~=o\ E ! ~ '  8ak, 

x (1 - Pa)k~(,)dk,(O) (B.14) 

Since it is immediate to prove that 

iL,~' [ ~ ] f ( F )  - 8G(a'O) (B.15) 

then 

(1 - PG)iL~' ~ 8G(a, 0) (1 - Pa)/~k(e)dk~(0) 
E ~ak, 

8G(a, 0) 1 -~ P~ iLR~(r 

a result which, after use of Eq. (B.14), leads to 

~G(a, 0) 1 
0(a, ,)k~(0G(a, 0) = - ~ 0 a ~  e - (1 - e~)iL (1 - Po)hk(,)Ak,,(O) 

(B.16) 
Thus, repeated applications of 0(a, E) gives 

1 
02(a, a)/~k(e)G(a, O) = ~ _ (1 -- Po)iL~' (1 - P~) 

I a 0G(a, 0) 
k n  - I k n  

1 (1 -- Pa)R~(,)~k~(0) | x Ak._~(0) ~ _ (1 - Po)iL ] 
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and. therefore 

02(a, ,)k~(E)C(a, 0) 

kn_ 1 - I  

1 (1 - PG)flk.(0)k~(O (B.17) 
x e -  (1 - P a ) i L  

By induction one can easily verify that 

[0(a, ,)]"kk(,)G(a, o) 
~G(a, 0) 

= 

kn kl 

i 
(1 - Pa)A~,(0)lkk(, ) (B.18) 

• [ r = ~ E - - ( 1  - Pa)iL 

Substitution of  Eq. (B.18) back into Eq. (B.3) yields 

o aG(a, 0) ,_9(k, k~ ..... k, ,  ,)  (B.19) 
~k(a ,O  = ,=o ( - 1 ) ' ~  " '" k~ ~ak--'~ " '" ~ak-'----~ 

where the quanti ty ~q(k, ka,..., k~, ~) is defined by 

1 
S(k,  kl ..... k~, , ) =  [~=1-~1 r _ ( 1 -  P a ) i L ( 1 - P c ) A ~ , ( 0 ) ] / ~ k ( , )  (B.20) 

Since 

8G(a,  0) 1 (1 -- P~)-~k._l(0) 
~ak, E -- (1 -- Pa)iL 

we have that 

1 f l e x  Rk(0) (B.21) r,u~,) = r _ (1 - Pa)iL 

~[ 1 R~(o) 1 S(k, kl ..... kn, 0 = e - (1 - Po)iL 
r = l  

1 
- (1 - P o ) i L  R~(O) 

(B.22) 

which after the inverse Laplace t ransform is taken, leads precisely to Eq. 
(91), where S(k ,  k l  .... , ks ,  t) is the inverse Laplace function of  ~q defined in 
Eq. (B.22). Thus, 

S(k ,  k l  ..... k , ,  t)  

= dq  . . .  dt ,  U(t - t~)Rkl(O) . . .  U(t ,  - t ,_l)Rk,(O)U(t ,)Rk(O) 

(B.23) 

where U(t)  = exp[(1 - P~)iLt]. 
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